2023 was the watershed year for Generative AI. Having debuted in early 2023, it is already seeing explosive growth in adoption across industries, including banking. 80% of the enterprises will have used Generative AI by 2026 (Gartner). For several decades now, banks have been at the forefront of technology adoption. Adoption of AI has moved beyond Proof of Concepts to the mainstream, cloud adoption being a significant enabler.
As per information available in the public domain, Santander Bank has identified over 60 use cases for Artificial Intelligence. JP Morgan Chase is working across 300 AI use cases. ING Bank, Deutsche Bank, Ally Financial, Citizens Bank, PNC Bank, Valley Bank, and several others have reported that they are actively exploring diversified AI use cases. A significant portion of these use cases involve Generative AI. Two-thirds of banks expect their IT spending to increase in 2024 (Cornerstone). The McKinsey Global Institute estimates that among industries globally, Gen AI could add the equivalent of $2.6 trillion to $4.4 trillion annually in value, with an annual potential of $200 billion to $340 billion in banking across all segments and functions.
Gen AI Use Cases in Banking
Gen AI enables the creation of new content based on existing data. It uses models that can learn existing patterns and structure of the data and generate new data with similar characteristics. It has many applications in banking.
Some of the typical use cases of generative AI in banking are:
Implementation challenges
Being part of a regulated industry, banks need to consider several factors in their Gen AI adoption journey. Some of the key factors are:
Technology considerations
Most banks still run on legacy core banking systems. These systems have evolved over a long time. They are complex and are tightly coupled with other systems. Changes to these systems are time-consuming. Gen AI applications are built on top of new technology stacks. Banks need to have a view of the overall architecture to support Gen AI, that takes into consideration the integration and co-existence between the new technology stacks and the existing legacy stack. Most banks are actively pursuing migration to the Cloud, often with multiple cloud providers. This adds another level of architectural complexity. Critical choices will need to be made between Build and Buy options for the Gen AI models and applications. Third-party risks must be carefully considered if the Bank decides to go the Buy route.
AI Regulations
In October 2023, the White House issued an executive order emphasizing content labeling and transparency of the AI models. The order requires the Department of Commerce to develop guidance for labeling AI-generated content. AI companies will use this guidance to develop labeling and watermarking tools that the White House hopes federal agencies will adopt. The executive order also calls for federal agencies to develop rules and guidelines for different applications, such as supporting workers’ rights, protecting consumers, ensuring fair competition, and administering government services. The US Government has launched the AI Safety Institute to develop standards for the safety, security, and testing of AI models, develop standards for authenticating AI-generated content, and provide testing environments for researchers to evaluate emerging AI risks and address known impacts. The use of AI will be regulated by the AI Act. Banking being a highly regulated sector, adopters of Gen AI need to look out for evolving standards, rules, and regulations.
The Journey
Banks should start with a clear business objective and value proposition. They should identify the specific use cases that Gen AI can address and the expected benefits and outcomes that it can deliver. They should define the key performance indicators and success metrics to measure the impact of Gen AI. They should start with small-scale and low-risk pilot projects to test and validate the feasibility and effectiveness of generative AI. Thereafter, they should continuously improve and refine the system based on the feedback from the users and stakeholders.
Banks should have a holistic framework that includes architecture, operating model, oversight, risk management and controls, talent, and change management. They should leverage existing platforms and tools that offer generative AI capabilities, such as Microsoft Azure OpenAI Service, ChatGPT, AWS BedRock, AWS Sagemaker, or Google Gemini for the development and deployment of generative AI solutions, as well as provide enterprise-grade security and compliance features.
They should aspire to build a culture of innovation and collaboration that encourages and supports the adoption of Gen AI. They should also invest in upskilling and reskilling their workforce to enable them to use and benefit from Gen AI, as well as to collaborate with the system.
Conclusion
Banks are at the nascent stages of AI adoption. Some have identified use cases and initiated pilot projects; others are still exploring and have not yet begun. AI and Gen AI should not be viewed merely as new technologies. Banks must plan for the right operating model, hire the right talent, and pay attention to new risks introduced by these technologies. They also need to get more agile. The technologies are evolving fast, and the legacy culture of most banks will not be able to cope with the required agility. When used properly for the right use case, they can improve efficiencies significantly, help mitigate risks, and create personalized service offerings. We can expect to see some successful Pilots in 2024 and 2025, and acceleration of adoption in 2026 and beyond. It is also expected that the Fintech space will get very active and highly competitive, addressing specific use cases leveraging AI and Gen AI.